

Example 1	
	$\{1,2\}\succ_1\{1\}\succ_1\{1,2,3\}\succ_1\{1,3\}$
	$\{1,2\}\succ_2\{2\}\succ_2\{1,2,3\}\succ_2\{2,3\}$
	$\{1,2,3\} \succ_3 \{2,3\} \succ_3 \{1,3\} \succ_3 \{3\}$
	in the core and is individually stable. Nash stable partitions.
{{1},{2},{3}}	$\{1,2\}$ is preferred by both agent 1 and 2, hence not NS, not IS.
{{1,2},{3}}	{1,2,3} is preferred by agent 3, so it is not NS, as agents 1 and 3 are worse off, it is not a possible move for IS. no other move is possible for IS.
{{1,3},{2}}	agent 1 prefers to be on its own (not NS, then, not IS).
{{2,3},{1}}	agent 2 prefers to join agent 1, and agent 1 is better off, hence not NS, not IS.
{{1,2,3}}	agents 1 and 2 have an incentive to form a singleton, hence not NS, not IS.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 10: Challenging the transferable utility assumption 5

Example 3

 $\{1,2\} \succ_1 \{1,3\} \succ_1 \{1\} \succ_1 \{1,2,3\}$ $\{2,3\} \succ_2 \{1,2\} \succ_2 \{2\} \succ_2 \{1,2,3\}$ $\{1,3\} \succ_2 \{2,3\} \succ_2 \{3\} \succ_2 \{1,2,3\}$

$$\{1,5\} \succ_3 \{2,5\} \succ_3 \{3\} \succ_3 \{1,2,5\}$$

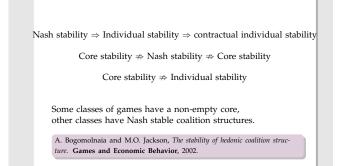
The core is empty (similar argument as for example 2).

There is no Nash stable partition or individually stable partition. But there are three contractually individually stable CSs: $\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\{\{2,3\},\{1\}\}\}$.

For {{1,2},{3}}:

- {{1},(2,3}}: agents 2 and 3 benefit, hence {{1,2},{3}} is not Nash or individually stable. however, agent 1 is worse off, hence not a possible move for CIS.
- {{2},{1,3}}: agent 1 has no incentive to join agent 3.
- {[1], {2], {3}}: neither agent 1 or 2 has any incentive to form a
- singleton coalition.

$$\begin{split} & \{1,2\}\succ_1\{1,3\}\succ_1\{1,2,3\}\succ_1\{1\}\\ & \{2,3\}\succ_2\{1,2\}\succ_2\{1,2,3\}\succ_2\{2\}\\ & \{1,3\}\succ_3\{2,3\}\succ_3\{1,2,3\}\succ_3\{3\} \end{split}$$
 The core is empty. $\begin{cases} \{1,2\},\{3\}, \{1,2\}, \{1,3\}, \{2,3\} \text{ and } \{1,2,3\} \text{ are blocking }\\ & \{\{1,2\},\{3\}, \{2,3\}\} \text{ is blocking }\\ & \{\{1,2\},\{3\}, \{1,2\}\} \text{ is blocking }\\ & \{\{1,2,3\}\}, \{1,2\} \text{ is blocking }\\ & \{\{1,2,3\}\}, \{1,2\} \text{ is blocking }\\ & \{\{1,2,3\}\}, \{1,3\} \text{ is blocking }\\ & \{\{1,2,3\}\}, \{1,2\} \text{ is blocking }\\ & \{\{1,2,3\}\}, \{1,3\} \text{ is blocking }\\ & \{\{1,2,3\}\}\} \text{ is the unique Nash stable partition, unique individually stable partition (no agent has any incentive to leave the grand coalition). \end{split}$



Stéphane Airiau (ILLC) - Cooperative Gar

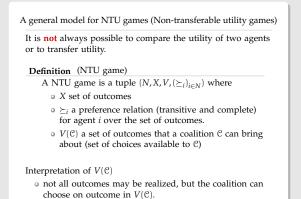
Lecture 10: Challenging the transferable utility assumption 6

Representations

- Anonymous preferences player's preferences depend only on the size of the coalition.
- **Individually rational coalition lists (IRCLs)** list only those coalitions that are preferred to singletons.
- Additively separable game (ASG). A game *G* is AS if there exists an $|N| \times |N|$ matrix *M* such that $\mathcal{C}_1 \succeq_i \mathcal{C}_2$ iff $\sum_{j \in \mathcal{C}_1} M(i,j) \ge \sum_{k \in \mathcal{C}_2} M(i,k)$.
- **Friends and Enemies:** each player has a set of friends *F* and a set of enemies *E* and use the number of members that are friends or enemies to evaluate their preferences (friends appreciation: which coalition has most friends, break ties with number of enemies, and enemies aversion: do the opposite)
- B and W-preferences: use a ranking over individuals and base the preferences on the best and worst member of the coalition.
- Hedonic Coalition Nets based on MC-nets.

Stéphane Airiau (ILLC) - Cooperative Games

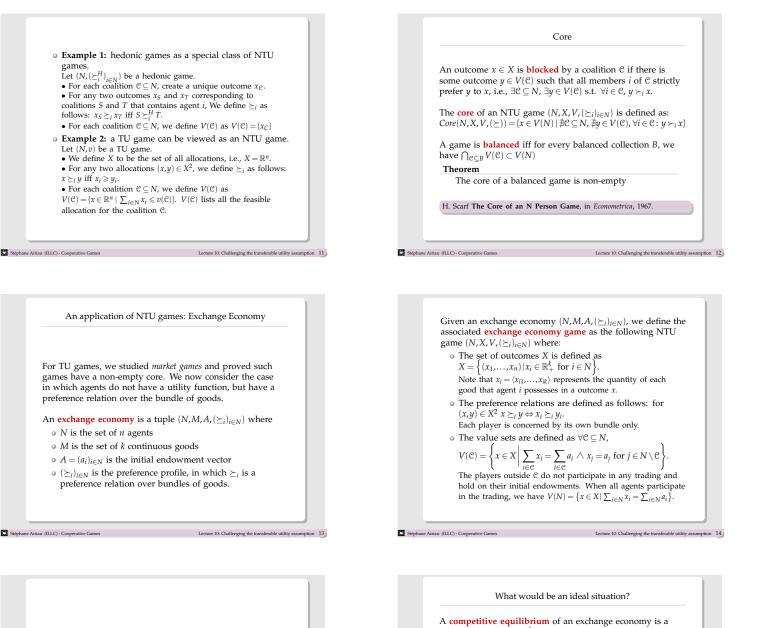
Lecture 10: Challenging the transferable utility assumption 9



• Effectivity function: set of choices that can be enforced by coalition C.

Lecture 10: Challenging the transferable utility assumption 10

Stéphane Airiau (ILLC) - Cooperative Games



Let us assume we can define a price p_r for a unit of good r. The idea would be to exchange the goods at a **constant price** during the negotiation.

Let us define a price vector $p \in \mathbb{R}_+^k$. The amount of each good that agent *i* possesses is $x_i \in \mathbb{R}_+^k$.

The total cost of agent *i*'s bundle is $p \cdot x_i = \sum p_r x_{i,r}$.

Since the initial endowment of agent *i* is a_{i} , the agent has at his disposal an amount $p \cdot a_i$, and *i* can afford to obtain a bundle y_i such that $p \cdot y_i \leq p \cdot a_i$.

Theorem

pair (p, x) where $p \in \mathbb{R}^k_+$ is a price vector and $x \in \{(x_1, \dots, x_n) | x_i \in \mathbb{R}^k_+ \text{ for } i \in N\}$ such that

• $\forall i \in N \ \forall y_i \in \mathbb{R}^k_+ \ (p \cdot y_i \leq p \cdot a_i) \Rightarrow x_i \succeq_i y_i$

then a competitive equilibrium exists.

one of its most favorites outcomes

it possesses the best outcome.

• $\sum_{i \in N} x_i = \sum_{i \in N} a_i$ (the allocation results from trading) • $\forall i \in N, \ p \cdot x_i \leq p \cdot a_i$ (each agent can afford its allocation)

Among all the allocations that an agent can afford, it obtains

Using the price vector and the allocation, each agent believes

Let $(N, M, A, (\succeq_i)_{i \in N})$ be an exchange economy. If each preference relation \succeq_i is continuous and strictly convex,

